
Bash Cheat Sheet

By John Stowers

This file contains short tables of commonly used items in this shell. In most cases the information applies to both the Bourne
shell (sh) and the newer bash shell.

Tests (for ifs and loops) are done with [] or with the test command.

Checking files:

-r file Check if file is readable.
-w file Check if file is writable.
-x file Check if we have execute access to file .
-f file Check if file is an ordinary file (as o pposed to a directory, a device special file, etc.)
-s file Check if file has size greater than 0.
-d file Check if file is a directory.
-e file Check if file exists. Is true even if file is a directory.

Example:

if [-s file]
then
 #such and such
fi

Checking strings:

s1 = s2 Check if s1 equals s2.
s1 != s2 Check if s1 is not equal to s2.
-z s1 Check if s1 has size 0.
-n s1 Check if s2 has nonzero size.
s1 Check if s1 is not the empty string.

Example:

if [$myvar = "hello"] ; then
echo "We have a match"
fi

Checking numbers:
Note that a shell variable could contain a string that represents a number. If you want to check the numerical value use one of
the following:

n1 -eq n2 Check to see if n1 equals n2.
n1 -ne n2 Check to see if n1 is not equal to n 2.
n1 -lt n2 Check to see if n1 < n2.
n1 -le n2 Check to see if n1 <= n2.
n1 -gt n2 Check to see if n1 > n2.
n1 -ge n2 Check to see if n1 >= n2.

Example:

if [$# -gt 1]
then
 echo "ERROR: should have 0 or 1 command-line parameters"
fi

Boolean operators:

! not
-a and
-o or

Example:

if [$num -lt 10 -o $num -gt 100]
then
 echo "Number $num is out of range"
elif [! -w $filename]

Page 1 of 4» Bash Cheat Sheet Johns Blog

18/3/2553http://www.johnstowers.co.nz/blog/index.php/reference/bash-cheat-sheet/

then
 echo "Cannot write to $filename"
fi

Note that ifs can be nested. For example:

if [$myvar = "y"]
then
 echo "Enter count of number of items"
 read num
 if [$num -le 0]
 then
 echo "Invalid count of $num was given"
 else
#... do whatever ...
fi
fi

The above example also illustrates the use of read to read a string from the keyboard and place it into a shell variable. Also
note that most UNIX commands return a true (nonzero) or false (0) in the shell variable status to indicate whether they
succeeded or not. This return value can be checked. At the command line echo $status. In a shell script use something like
this:

if grep -q shell bshellref
then
 echo "true"
else
 echo "false"
fi

Note that -q is the quiet version of grep. It just checks whether it is true that the string shell occurs in the file bshellref. It does
not print the matching lines like grep would otherwise do.

I/O Redirection:

pgm > file Output of pgm is redirected to file.
pgm < file Program pgm reads its input from fil e.
pgm >> file Output of pgm is appended to file.
pgm1 | pgm2 Output of pgm1 is piped into pgm2 as the input to pgm2.
n > file Output from stream with descriptor n redirected to file.
n >> file Output from stream with descriptor n appended to file.
n >& m Merge output from stream n with stre am m.
n <& m Merge input from stream n with strea m m.
<< tag Standard input comes from here throu gh next tag at start of line.

Note that file descriptor 0 is normally standard input, 1 is standard output, and 2 is standard error output.

Shell Built-in Variables:

$0 Name of this shell script itself.
$1 Value of first command line paramete r (similarly $2, $3, etc)
$# In a shell script, the number of com mand line parameters.
$* All of the command line parameters.
$- Options given to the shell.
$? Return the exit status of the last c ommand.
$$ Process id of script (really id of t he shell running the script)

Pattern Matching:

* Matches 0 or more characters.
? Matches 1 character.
[AaBbCc] Example: matches any 1 char from the list.
[^RGB] Example: matches any 1 char not in t he list.
[a-g] Example: matches any 1 char from thi s range.

Quoting:

\c Take character c literally.
`cmd` Run cmd and replace it in the line o f code with its output.
"whatever" Take whatever literally, after first interpreting $, `...`, \
'whatever' Take whatever absolutely literally.

Example:

Page 2 of 4» Bash Cheat Sheet Johns Blog

18/3/2553http://www.johnstowers.co.nz/blog/index.php/reference/bash-cheat-sheet/

match =` ls * .bak ` #Puts names of .bak files into shell variable match.
echo \ * #Echos * to screen, not all filename as in: echo *
echo '$1$2hello' #Writes literally $1$2hello on screen.
echo "$1$2hello" #Writes value of parameters 1 and 2 and string hello.

Grouping:
Parentheses may be used for grouping, but must be preceded by backslashes
since parentheses normally have a different meaning to the shell (namely
to run a command or commands in a subshell). For example, you might use:

if test \ (-r $file1 -a -r $file2 \) -o \ (-r $1 -a -r $2 \)
then
 #do whatever
fi

Case statement:
Here is an example that looks for a match with one of the characters a, b, c. If $1 fails to match these, it always matches the *
case. A case statement can also use more advanced pattern matching.

case "$1" in
 a) cmd1 ;;
 b) cmd2 ;;
 c) cmd3 ;;
 *) cmd4 ;;
esac

Loops:
Bash supports loops written in a number of forms,

for arg in [list]
do
 echo $arg
done

for arg in [list] ; do
 echo $arg
done

You can supply [list] directly

NUMBERS="1 2 3"
for number in ` echo $NUMBERS̀
do
 echo $number
done

for number in $NUMBERS
do
 echo -n $number
done

for number in 1 2 3
do
 echo -n $number
done

If [list] is a glob pattern then bash can expand it directly, for example:

for file in * .tar.gz
do
 tar -xzf $file
done

You can also execute statements for [list] , for example:

for x in ` ls -tr * .log `
do
 cat $x > > biglog
done

Shell Arithmetic:
In the original Bourne shell arithmetic is done using the expr command as in:

Page 3 of 4» Bash Cheat Sheet Johns Blog

18/3/2553http://www.johnstowers.co.nz/blog/index.php/reference/bash-cheat-sheet/

result =` expr $1 + 2 `
result2 =` expr $2 + $1 / 2 `
result =` expr $2 \ * 5 ` #note the \ on the * symbol

With bash, an expression is normally enclosed using [] and can use the following operators, in order of precedence:

* / % (times, divide, remainder)
+ - (add, subtract)
< > <= >= (the obvious comparison operators)
== != (equal to, not equal to)
&& (logical and)
|| (logical or)
= (assignment)

Arithmetic is done using long integers.
Example:

result =$[$1 + 3]

In this example we take the value of the first parameter, add 3, and place the sum into result.

Order of Interpretation:
The bash shell carries out its various types of interpretation for each line in the following order:

brace expansion (see a reference book)
~ expansion (for login ids)
parameters (such as $1)
variables (such as $var)
command substitution (Example: match=`grep DNS *`)
arithmetic (from left to right)
word splitting
pathname expansion (using *, ?, and [abc])

Other Shell Features:

$var Value of shell variable var.
${var}abc Example: value of shell variable var with string abc appended.
At start of line, indicates a commen t.
var=value Assign the string value to shell var iable var.
cmd1 && cmd2 Run cmd1, then if cmd1 successful ru n cmd2, otherwise skip.
cmd1 || cmd2 Run cmd1, then if cmd1 not successfu l run cmd2, otherwise skip.
cmd1; cmd2 Do cmd1 and then cmd2.
cmd1 & cmd2 Do cmd1, start cmd2 without waiting for cmd1 to finish.
(cmds) Run cmds (commands) in a subshell.

Page 4 of 4» Bash Cheat Sheet Johns Blog

18/3/2553http://www.johnstowers.co.nz/blog/index.php/reference/bash-cheat-sheet/

